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A Tow-Level Progressive Damage Model For
Simulating Carbon-Fiber Textile Composites:

Interim Report

by

Edward Zywicz

Abstract

A numerical approach to model the elasto-plastic and tensile damage response
of tri-axially braided carbon-fiber polymeric-matrix composites is developed. It is
micromechanically based and consists of a simplified unit cell geometry, a plane-
stress tow-level constitutive relationship, a one-dimensional undulation constitutive
law, and a non-traditional shell element integration rule. The braided composite
lamina is idealized as periodic in the plane, and a simplified three-layer representa-
tive volume (RV) is assembled from axial and braider tows and pure resin regions.
The constituents in each layer are homogenized with an iso-strain assumption in
the fiber-direction and an iso-stress condition in the other directions. In the up-
per and lower layers, the fiber-direction strain is additively decomposed into an
undulation and a tow portion. A finite-deformation tow model predicts the plane-
stress tow response and is coupled to the undulation constitutive relationship. The
overall braid model is implemented in DYNA3D and works with traditional shell
elements.

The finite-deformation tow constitutive relationship is derived from the fiber
elasticity and the isotropic elasto-plastic power-law hardening matrix response us-
ing a thermodynamic framework and simple homogenization assumptions. The
model replicates tensile damage evolution, in a smeared sense, parallel and per-
pendicular to the fiber axis and is regularized to yield mesh independent results.
The tow-level model demonstrates reasonable agreement, prior to damage, with de-
tailed three-dimensional FE (finite element) elasto-plastic simulations of aligned,
periodically arranged, uni-directional composites.

The 3-layer braid model response is compared with predictions obtained from
detailed micromechanical simulations of the braid’s unit cell in uni-axial extension,
shear, and flexure for three braid angles. The elastic properties show good agree-
ment as does the non-linear response for loadings dominated by the axial tows.
In loadings dominated by the braider tow response, the absence of a non-linear
undulation model deteriorates the agreement. Nonetheless, the present approach
is applicable to a broad range of tri-axially braided composites as well as for uni-
directional composites, but presently lacks any compressive failure mechanisms and
an adequate non-linear undulation model.
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1 Introduction

Large-tow carbon-fiber textile composites contain many unique features that must be ad-

dressed when modeling their behavior. The elastic properties of textile composites have

been calculated using a variety of numerical and micromechanical techniques as summa-

rized in Naik (1995) and Carrier and Averill (2000). Naik (1995) developed an idealized

three-dimensional (3-D) representative unit cell (RUC) geometry. He subdivided 

RUC, expressed the local stiffness each sub-cell in the global coordinate system, and ap-

plied iso-strain assumptions to calculate the effective extensional RUC elastic properties.

To capture the bending and straightening/wrinkling undulation behavior, an undulation

model was derived from the solution for an elastic beam on an elastic foundation and

used in the undulation slice region. The predicted elastic braid properties showed good

agreement with experimental values.

Carrier and Averill (2000) used Naik’s RUC geometry and constructed a finite element

(FE) unit cell with beam and shell elements. The former element type represented the

fiber tows and the later the surplus resin. They adapted Naik’s undulation model to

calculate a fiber-direction reduction factor and applied it to the fiber-direction modulus

in the braider tows to account for the undulation. Their effective elastic properties agreed

favorably with those of Naik.

Zywicz and Nguyen (1999) developed a detailed FE model with hexahedral elements

based on Naik’s RUC and explored the extensional and flexural response of large-tow

carbon-fiber tri-axial braids. Like Whitcomb et al (1998), they placed element faces

coincidental with tow-resin and tow-tow interfaces, and found that the effective lamina

extensional and flexural elastic properties are distant quantities, not derivable from one

another. This was attributed to their large microstructural size and non-homogeneous

fiber distribution. Zywicz et al (2000) extended this theoretical work to address other

braid angles as well as to predict their elasto-plastic response under uni-axial extension,

shear, and flexure.

The non-linear behavior has been investigated as well. Naik (2000) incorporated 

incremental non-linear shear response and a stiffness reduction-based orthotropic damage

model to predict the RUC response and overall strength. The in-plane shear stress-strain

response was given by a three term expression. Four tow-level failure criterion were used.

When a criteria was satisfied, select moduli in the sub-cell were reduced by 80% to 99%.

The model predictions agreed well with their experimental results.
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Unfortunately, the detailed non-linear approaches used by Naik (1995) and Zywicz et

al (2000) are not useful in large-scale numerical calculations due to their computational

expense. Furthermore, the treatment of damage in Naik’s work contains no inherent

length scale or energy quantity and may be overly conservative in some applications.

The later."dan cause incorrect subsequent or collateral damage modes to be initiated.

The present work develops a simple micromechanically based numerical technique to

represent carbon-fiber textile composites in large-scale vehicular crashworthiness simula-

tions. First, a tow-level elasto-plastic constitutive law with tensile damage is developed

from the basic fiber and matrix properties and behaviors. The individual constituent

behaviors are homogenized using, a geometry independent approach, and the damage
portion of the constitutive law is regularized to yield mesh independent results. The

elasto-plastic tow response is compared with results from detailed 3-D micromechanical

models. Next, a simplified braid geometry is constructed from Naik’s RUC and is ex-

plicitly defined in terms of its local microstructural features. Following that, a 3-1ayer

numerical model is assembled. The resin region and tow constitutive behavior in each

layer are homogenized. An explicit undulation model is outlined and coupled to the tow

model by additively decomposing the fiber-direction strain and enforcing an approximate

one-dimensional iso-stress assumption. The through-thickness integration requirements

necessary to implement the 3-layer model in traditional shell elements are presented. In

the next section, the numerical 3-layer braid model is validated by comparing results

from it and detailed elasto-plastic 3-D FE simulations of several tri-axial braids. Lastly,

a short summary of the model is presented and missing features are identified.

2 Tow-Level Constitutive Model

A plane-stress constitutive model is derived for a continuous, uni-directional, fiber com-

posite tow. The tow is assumed to be made up of many fiber-level RVEs. Each RVE

contains a single fiber and its adjacent matrix material. Within the RVE, a local material

coordinate system is constructed such that the 1-axis parallels the local axial fiber direc-

tion and the 3-axis points out of the lamina plane. The fiber is idealized as a transversely

isotropic elastic solid and the matrix is taken as an isotropic elasto-plastic solid with J2

power-law hardening.

The tow model is presented in three sections. The first section describes the homog-

enization process used to construct the effective composite response from the individual



fiber and matrix responses. The second section presents the plane-stress plasticity rela-

tions, and the last section discusses the tensile damage mechanisms.

2.1 Tow-Level Homogenization

The basic constitutive relationships, which are used to relate the average RVE stress to

the average RVE strain in each constituent, are given by

and (r "~ = C"~" (e"~ - e’~P), (1)

where
$11 ~’~120 0 0
$12 $22 0 0 0
0 0 $44 0 0
0 0 0 $55 0
0 0 0 0 S~6

er = {au,a~2,a12,a23,a13}T, e = {eu,e2:,2e~,203,2e~a}T, and the superscripts f, m,

c, and p denote fiber, matrix, composite, and plastic quantities, respectively. (Bold

quantities denote vectors and matrices, and bold calligraphic variables represent 4-th

order {ensors. The operator ":" implies an inner product. The superscripts T and -1

define the matrix transpose and inverse operations, respectively.) The initial components

of the compliance tensor ~ are defined in the traditional manner, e.g., see Jones (1975).

The RVE is homogenized by enforcing an iso-strain condition in the fiber direction

and iso-stress conditions in the other directions, i.e.,

and
i = 2,3,4,5. (4)

The remaining composite stress and strain terms are given by

(5)

and

i = 2, 3, 4, 5,

where vI and v"~ are the fiber and matrix volume fractions.



With the present homogenization and constituent assumptions, it is possible to de-

velop a simple, compact form, for the RVE constitutive relationship. For convenience, de-

fine the reduced stress and strain vectors, ~" and 7, respectively, as ~- - (a22, ai2, a2a, ala}T

and 7 = (e22, 2e12, 2e23, 2e13}T. From (1) and (2), the reduced fiber relationship is 

pressible as

7" --" 612 ell p -~- ~f : (7)

where

~ = C/+l,j+ 1 i,j = 1,2,3,4

and p = {1, 0, 0, 0}T. Solving (7) for 71 yields

= -

(s)

(9)

which, when substituted into (6) and rearranged, gives the reduced matrix strain vector

as

,,/n = {9,~ _ vI@_,$-l: {,r f _ C{~ ~, p}} 1. (10)
Vm

Inserting (10) into the matrix law (1) gives

and by noting that rf = ~.m = ~.~, it can be alternatively written as

Vm ~1 \

To simplify (12), define ,~! 

0 0 0 0 0

0 Oil -1 Of 2"-1 Of 3-1 (~f4"-1

00i1-Zl ~-~12-1 (~3-1 (~14"-1

(13)

and the effective matrix strain, ee, as

~.~

B : ec-- (~C WvSq~lp) _~_~
(14)
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where
1 0 0 0 0

qv//v "~ 1/v ’~ 0 0 0
0 0 1/vm 0 0
0 0 0 1/vm 0
0 0 0 0 1/v’~

and, assuming C/ possesses transverse isotropy,

(15)

/q = -S12/Sn. (16)

Consequently, (12) can be written and solved for "~ togive

(17)

where -1

T~ = (I + vlC’n~vra ] Cm, (18)

I is the 5 x 5 identity matrix, and ff = T~-1.

Aside: with the assistance of a symbolic mathematical manipulator, the non-zero

components of L~, expressed in matrix form, can be shown to be:

The fiber stress can now be expressed in a similar form. From (1) and (2), the fiber

axial stress is given by

With E and H defined as

e~x ~S~2 ac (25)=

o o o o
0 0 0 0 0
0 0 0 0 0
0 000 0
0 0 0 0 0

and H =

0 q 00
0 1 0 0
0010
0 0 0 1
0000

0
0
0 ,
0
1

(26)



or/is alternatively given by

1
= ~--jE" ec÷ H : a"~ (27)

1= ~: ~° + H~: {~ - ~m~}. (28)

With the fiber and matrix stresses expressed in similar forms, the composite stress

can now be assembled. Because v’~÷ vf = 1, equations (4) and (5) can be combined 

written as

o"c = vrno"m + via "f. (29)

Substitution of (17) and (28) into.the previous expression yields

= E:e~+G~:(e~-
(31)

(32)

where
vm v~ q 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

In the absence of matrix plasticity, i.e. e’rip = 0, (32) reduces 

(33)

er~ = (E + G2~B) : ~ (34)

and the parenthetical quantity is the effective composite stiffness.

The effective composite elastic properties are transversely isotropic and are given by:

(37)



~ - ~ ~h + ~ (1 + ~) u¢~ (38)

Iz~3 = ~zvm + UmvI (39)

~ = v~u(~ + v~u~ (40)
E~ 1 (~)

Unfortunately, as described in the subsequent validation section, #~2 underestimates the

value obtained when the fibers are assumed to be in e.ither cylindrical, square, or hexag-

onal packing arrays. Thus, the Hasin and Rosen (1964) cylinder estimate, as presented

in Hashin (1983), is averaged with the present estimate to yield #~, the value employed

in this model. Note, this requires that ,7a3 be redefined as ~73a = 1/(vra #~).

In application, equations (17), (25), and (30) provide a more efficient way to determine

the tow stress than (32). This is because (17) is identical in form to the original matrix

constitutive relationship. Consequently, the plasticity rules governing the underlying

matrix relationship apply directly to the pseudo-matrix response represented by (17).

2.2 Finite Deformation

Orthotropic damage models that use stiffness enhancement (as used here) or compliance

degradation to represent smeared damage and are formulated with a traditional hypo-

elastic framework can demonstrate undesirable behavior in FE implementations. For

example, assume that the constitutive model is given by

(42)

where ~rv is the Jaumann stress rate, d is a vector of internal variables, and & is the

symmetric part of the velocity gradient L. Consider a single cubic hexahedral element

whose sides are of unit dimension and are aligned with a Cartesian coordinate system.

Assume that all Poisson’s ratios are zero, although not necessary, and that at the strain

state e* =< e~l,e~2,0,0,0,0 >~, the material is fully damaged in the 1-direction and

virgin in the other directions. The net force acting on the element side whose normal

points in the positive 2-direction is given by

.f2 ~ (I +e~z)O22e22 (43)



Now, stretch the element so that only the strain in the 1-direction increases. From (43),

the normal force acting in the direction transverse to the straining direction increases

even though e22 remains fixed. While the transverse stiffening is small when ell << 1, in

actual application there is no guarantee that this will be true. In order to eliminate this

artificial stiffening, C must depend upon the deformation or some additional mechanism

must be used. Such problems are common with damage models, e.g., see Ba~ant and

Planas (1998).

An alternative method that eliminates artificial transverse stiffening is to develop the

constitutive relationship with the second Piola-Kirchhoff stress, ~, and an appropriate

strain measure. When ~ is transformed to the Cauchy stress to perform element inte-

gration, the stress is scaled by the deformation such that the net element force remains

essentially unchanged. (For additional details, see Malvern, 1969.) The disadvantage

of using ~’ occurs in picking a strain measure and constructing damage surfaces since

directional orthogonality is not preserved with deformation.

The apparent natural choice for strain is to use the Green-St. Venant strain, E, which

is the work conjugate measure to ~. Unfortunately, the physical interpretation of E

degenerates when shear strains of 10% or more accumulate. Specifically, the volumetric

portion of E is influenced by the shears and vice versa (Ba~.ant and Planas, 1998).

Also, the normal strains are "quadratic" functions of the stretches. An alternative strain

measure that is linear in stretch is the "U-based" strain, e, defined as

e=U-I (44)

where U is the right stretch tensor and I is the identify matrix.

The constitutive model is implemented using the finite deformation measures ~ and

e. However, for presentation purposes, the stress and strain vectors are denoted by ~r and

e in this manuscript. In order to use ~ and e, it is necessary to calculate the deformation

gradient F. In shell elements, direct determination of F is not possible since the through-

thickness displacement is not known a priori. A procedure has been employed by Puso

and Weiss (1997) that skirts this problem and is based upon a recursive formula for the

determination of F. The formula is given by

(45)

where At is the time increment. At the beginning of the time step, trial values of

l,~+a~/2 and F~+at are formed assuming the through-thickness velocity component is
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zero. The constitutive equation and through-thickness strain are updated based on the

approximated value of Fe+at. The resulting through-thickness strain increment is then

used to infer the unknown velocity allowing Lt+m/2 and F~+A~ to be properly updated.

2.3 Tensile Damage

Orthotropic tensile damage mechanisms are incorporated into the individual fiber and

matrix constitutive relationships and are derived using a general thermodynamic frame-

work, e.g., see Govindjee, Kay, and Simo (1995), Hansen and Schreyer (1994), and Zywicz

(1997). Compliance enhancement is used to represent the smeared effect that crack nu-

cleation and growth has on the material. Two crack directions are depicted in the present

work. A smeared crack whose normal parallels the 1-axis replicates the behavior of cracks

in the matrix and fiber associated with fiber breakage and is included in both the fiber and

matrix models. A second smeared crack, parallel to the 2-axis, simulates matrix splitting

and/or fiber-matrix interface debonding and is included only in the matrix model.

The damage constitutive relationship is derived first for a generic elasto-plastic ma-

terial with arbitrary elastic symmetry. The derivation clearly shows that the plasticity

relationship, described in the next section, is fully compatible with the present generic

formulation. The derivation directly yields the matrix model and, after elimination of the

plasticity and second damage mechanism, the fiber model. For practical and numerical

reasons, several simplifying assumptions are made that allow the separate fiber and ma-

trix stress-based fiber-damage models to be replaced by a combined, nearly equivalent,

strain-based relationship.

2.3.1 Generic Constitutive Formulation

A free energy function is postulated with the form

¯ = (e- eP): C (d): (¢- p) +~d(d)~ (~’) (46)

where d is the vector of damage variables, and ~, and ~ are the plastic and damage

potentials (defined later). Enforcement of the 2nd law of thermodynamics necessitates

that energy dissipation be non-negative and requires that

-~ + ~r : & _> 0, (47)

or, alternatively, as

0~O~d &’:C(d):¢~+~’: O~v >0" (48)
~:(o’-C(d)’ae)-~ae:6(d):ae+~l: -
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This inequality must hold true for arbitrary values of ~/, ~, and ~P. Following Simo (1989),

the constitutive law is taken as

er = C (d): e,  (49)

and the damage and plastic dissipations are individually required to be non-negative,

i.e.,

Dd = --3 : ~(d): + d: 0~ -> 0 (50)

Dp=-~:C(d):e ~+~p: cO~’ >0’ (51)

The damage surfaces are defined as

Cei "- y/~r: .hdi a-ali[(1 -5)exp(-di/doi) + (52)

where af is the tensile failure strength, do is a material property, 5 is a retention factor,

and i - 1, 2 denote the damage expressions for the fiber-direction damage and transverse

damage mechanisms, respectively. The crack-plane tensors, A4i, are given by, in compact

notation,

and

< o’~l > .0 0 0 0
0 0 0 0 0
0 0 (a:~f/~)~ 0 0
0 0 0 0 0
0 0 0 0 (a:3l/al:)2

(53)

d~2 -"

0 0 0 0 0
0 < a22 > 0 0 0
0 0 (~:~/~)~ 0 0
0 0 0 (a23~/af2)2 0
0 0 0 0 0

(54)

The quantities ~125, t:r23~’ and al3I are the shear failure strengths, and < ¯ > is 1 when

, >_ 0, and zero otherwise. Define the damage potential ~e as

qYd = ~ ali doiexp
i=l

and the work conjugate variable to di and @ as

and
rV _ -0~

+ di), (55)

(56)

(57)
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Adopting the definition in (49), (50) and (51) are satisfied only 

1

2e:~,:e+rd:d>_O
(58)

and

-~P : C : e~ + rp~ _> 0. (59)

The evolution equations are obtained by individually maximizing the energy dissipa-

tion for plasticity and damage. Define the modified dissipation equations as

Lp(er, rP,~) -- -~:~r-~q~+

Ld (0", ~’d, ~d) ---- ~ : ~ : ~r + ql~ll + q2~2 - /~dlCdl --

(60)
(61)

noting that e ¯ ~ : e -- -er : ,~ : er and A are Lagrange multipliers. Maximization of L~

and Ld requires that
OL~ _ OL~ _ OL~ =0
O~ 0~ OqV

and
OLd OLd cOLd cOLd OLd
CO~ -- CO~d--1 CO~d.--’~2 -- cOrd l = cOrd2 ----0,

respectively. Enforcement of these conditions implies that for the plasticity relationships

and for the damage relationships

cOLd

OLd

COLd

OLd

COLd
cOrd 2

~=0 ~

--=0 =~ Cd~=0 when

--=0 =~ Cd~=0 when

--=0 ~

--=0 ~ ~=~.

(65)

(66)

(67)

(68)

(69)
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The plasticity relationship defined by (62)-(64) is equivalent to the one defined for 

matrix by equations (92)-(95) in the next section since )~ and Ap are proportional. 

too, that in the proposed form, the plasticity and damage evolutions equations are inde-

pendent.

The damage evolution equations can be explicitly calculated. Substitution of (68)

and (69) into (65) and noting that Cd~ = 0 when ~ ¢ 0 yields

2

,=1 af~((1-~)exp(-di/do~)÷~)"
(70)

Since ~i is, in general, singular, the solution of (70) is non-unique. Nonetheless, it 

assumed that (70) can be expressgd 

2

,=~ ai,((l_5)exp(_d,/do,)+5).
(71)

which after integrations yields

~(d)=~o+~i log l+~exp di -~ (72)
i=1 ] "

or, when ghe regengion factor ~ = 0,

8(d)=8o+~d°~ exp -1 . (73)
i=1

Here 8o denotes the initial material compliance. Equations (72) or (73) along 

damage surface definitions and the Kuhn-~cker conditions implied by (66)-(67) specify

the complete (matrix) damage relationship. When 5 = 0, the damage-induced ener~

dissipation per unit initial volume is given by

do ~ aI ~ ( 74 )~d~ -- 2

Both the fiber and matrix materials are idealized with the constitutive model just

developed; however, pl~ticity and the second damage mechanisms are omitted from the

fiber model. All material quantities used in the respective models as well as the stress

and strain vectors are those associated with the specific constituent.

14



2.3.2 Simplified Fiber-Direction Damage Model

A simplified strain-based fiber-direction failure criteria is now developed. This is done for

numerical reasons, to eliminate the need to concurrently iterate on multiple damage and

plasticity surfaces, as well as for practical and physical reasons. Presently, it is difficult

to determine all the material coefficients needed for the fiber-direction tensile damage

mechanism. Furthermore, experimental evidence suggests that fiber-direction strain is

equally reliable in determining failure as is its associated stress-based criteria.

Consider uni-axial fiber-direction loading. Based upon (5), the composite stress 

given by

= + vmo :
or, under purely elastic conditions,

(yiEld1 +v,.~Em) O’11 ~f "-- ~11" (76)

Since v/E(1 >> vinEm in composites consider here, it is reasonable to assume that at the

onset of fiber-direction failure the matrix contribution to the overall composite stress is

negligible, i.e.,

Vf(7~l > vm(T~I, (77)

and that failure initiation is controlled solely by the fiber contribution, i.e.,

(78)

Note that non-linear matrix behavior typically initiates prior to composite failure so that

an < :.
The assumption that fiber-direction tensile failure is controlled by the fiber quantities

is support by Swanson and co-workers (Swanson et al, 1987). They performed bi-axial

testing on several carb0n-fiber uni-directional composites, and concluded that e~l/does

not vary with physically achievable bi-axial loads - including shear. Observations made by

DeTeresa (2000) indicate that shear failure in low-modulus carbon-fiber composites differs

from that observed in high-modulus carbon-fiber composites. In high-modulus systems,

the fiber fails in shear perpendicular to the fiber direction where as in low-modulus

systems, the matrix fails parallel to the fiber direction. For low-modulus systems, this

implies that shear does not induce a fiber-direction tensile failure mode. Thus, for low-

15



modulus carbon-fiber systems it is reasonable to define J~41 as

< an > 0 0 0 0
0 0 0 0 0
0 0 "0" 0 0
0 0 0 0 0
0 0 0 0 "0"

(79)

Use of (79) in ¢d~1 results in the classic stress-based fiber-direction failure criteria.
Several ways exist to transform the present stress-based criteria to a nearly equivalent

strain based criteria. The two easiest methods, which yield equivalent results, are to

assume that ~’12 - ~3 = 0 or to consider a one-dimensional idealization. The former is

now used along with (79).

Consider the damage surface ¢dl with J~l given by (79). With ~12 = 0, S~2, $21,

C~2, and C21 are all zero. By use of (72) or (73) along with (48), the damage surface 

be expressed as

Cdi=e:: E::+<el:>a--~51og[l+5(X~-l)]-af: --~-~ +5 (80)

or, when 5 = 0,
do1 (X~- 1)) all (81)Cdi = (~II EllA- < ~11 > (T.f 1 X1 ,

where

Xi = exp ~ .

Noting that Ce t = 0 during acgive damage, ghe evolugion of ghe ingernal damage variable

X~ can be explicigly given in germs of e~ ~
[ X1’ (1 + 5 (X 1 - 1))(~1 + do1 log[l + 5 (X1 - 1)1),]

(83)X1 m~
6 ~1~ < ~11 >

and when ~ = 0

Xl=max[X1,

ei~-do~ ]
(84)

<e~ >e~-d0~ "

Caution must be used when numerically employing either of these expressions since a

pole exists in (83) at e~ = 0 and in (84) at < en > en = d0 ~, and the equations are 

valid beyond those points.

The above strain-b~ed criteria does not differ substantially from the previously pro-

posed stress-b~ed criteria. Zywicz (1999) showed that the differences in using the fiber-

direction strain criteria instead of the fiber-direction stress criteria are relatively small for
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elastic solids with a high degree of elastic orthotropy. For an AS4/3501-6 uni-directional

composite with a longitudinal to transverse moduli ratio of 10, the maximum normalized

difference was less than 7% for bi-axial transverse strains equal to or less than the longi-

tudinal failure strain. Furthermore, Swanson’s experimental results support the use of a

fiber-direction strain criteria.

2.3.3 Utilization

Equation (78) suggests that any matrix damage which evolves before fiber damage initi-

ates has little impact on the axial response. Similarly, matrix degradation that evolves

after the fibers become fully dama.ged does not appear very important. Thus, it is con-

venient and practical to couple the fiber and matrix fiber-direction damage mechanisms

together so that matrix and fiber damage initiates, evolves, and terminates simultane-

ously.

The fiber-direction damage mechanisms of the fiber and matrix are coupled together

by using common values of dl and do 1. With ef 1 interpreted as the composite’s fiber-

direction strain at the onset of failure, (84) is used to evolve the damage variable. The

material constant do ~ is calculated as

do ~ = 2~dl (85)

where f~d ~ is the fiber-direction damage energy of the composite and a} ~ = E~I~ y. (The

latter idealization ignores plasticity in the matrix contribution.)

The present damage model is regularized to generate mesh independent results using

the approach developed by Oliver (1989) and Hillerborg (1976). The approach assumes

that a single crack forms in an element for each damage mode. Oliver modifies the

constitutive model constants such that the energy dissipated constitutively in the element,

(Dp+Dd)V, equals the material’s fracture energy, G, times the element’s postulated crack

area A. The material constant do for each element is calculated as

do = 2G/l - Dp, (86)

where I ---- VIA and V is the element volume. Furthermore, to ensure a finite sound speed

and a finite softening modulus,

> 2 (87)
a~’
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where ~ is the stored elastic energy density at failure. In the current implementation,

(87) is satisfied in each element by increasing the element’s value of G as necessary.

A simply modification can be introduce to model multiple crack formation per el-

ement. Let 1/pc define the distance between cracks normal to the crack face. If the

element length l is greater than 1/pc, then do is calculated as

do = 2pc~ - Dp (88)

The technique can only be applied in situations where Pc is know a priori.

2.4 Plane-Stress Plasticity

Matrix plasticity is modeled with a conventional J2 power-law relationship. The plane-

stress yield surface is given by

¢~ = an : P. an _ G~ (~), (89)

where P, the plane-stress projection operator (e.g., see Simo and Taylor, 1986), is given

1 -1/2 0 0
-1/2 1 0 0
0 0 3 0
0 0 0 3
0 0 0 0

0
0
0 ,
0
3

(9o)

the hardening law by

G (~) = k (e0 + @)~, (91)

and k, Co, and n are material constants. Plastic flow occurs normal to the flow surface

such that
~---- )~P : "m  (92)

and

~ = AV/O"m : PEP: ~r", (93)

where
4/3 2/3 0 0 0 ~
2/3 4/3 0 0 0
0 0 1/3 0 0
0 0 0 1/3 0
o o o o 1/3

(9~1)
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234.3 34.5 24.1 0.30

Table 1: Carbon fiber properties

0.40

and A is the consistency parameter. To satisfy the inherent Kuhn-Tucker constraint,

CpA=0, Cp_<0, and A>_0. (95)

2.5 Validation

The homogenized tow-level constitutive model was implemented in DYNA3D (Whirley

and Englemann, 1993) and compared to detailed 3-D micromechanical FE simulations.

The micromechanical model idealized the fiber packing as hexagonal in the tow and

modeled the individual fiber and matrix discretely as shown in Figure 1. The fiber was

considered to be a transversely isotropic elastic solid with the elastic constants given

in Table 1. The matrix was taken as an isotropic elasto-plastic solid with a Young’s

modulus of 4.35 GPa, a Poisson’s ratio of 0.36, and a power-law flow stress given by

117.1 (@ + 5 × 10-4)°’°4 MPa. Table 2 summaries the effective elastic constants of the tow

for various fiber volume fractions. Overall, the tow model predictions agree reasonably

well with the hexagonal idealization for all fiber volume fractions considered.

The consistent #u value from the homogenization is less than half the hexagonal

packing value. Because the homogenized tow behavior is transversely-isotropic and

depends solely on 7u, alternative homogenization schemes can be used to calculate

without altering the other coefficients or, in general, the basic homogenization assump-

tions. For the present material, the value of #u calculated from the composite cylinder

model (Hasin, 1983) is much larger than the hexagonal packing values. However the aver-

age of the two homogenization schemes yields a #~t value very close to the hexagonal-based

value. Thus, the averaged #u, denoted as #it, is used in the present model.

Various elasto-plastic comparisons were performed between the tow model and the

hexagonal FE model. These calculations assumed vf = 0.70 and imposed peak macro-

scopic strain levels of 0.02. Under uni-axial longitudinal loading, both responses appear

nearly linear during loading and unloading, and differ in proportion to their longitudinal

Young’s moduli. The hexagonal model does develop a small plastic axial strain of 0.06%

by the end of the loading cycle. Similar behavior was observed for the other bi-axial

and tri-axial loadings examined. These include: 1) bi-axial loading in the transverse
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Figure 1: Mesh of hexagonal tow RVI~
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vI Model E~ (GPa) Et (GPa) #u (GPa) #u (GPa) uu uLt
0.5 FE 111.0 7.558 2.170 2.770 0.480 0.326

Tow 118.6 6.428 2.088 2.610 0.540 0.330
0.6 FE 134.0 9.267 3.183 3.445 0.455 0.323

Tow 141.8 7.682 2.501 3.272 0.535 0.324
0.7 FE 155.8 11.65 4.072 4.403 0.430 0.317

Tow 164.9 9.536 3.121 4.279 0.526 0.318
0.8 FE 177.5 15.09 5.347 5.914 0.411 0.312

Tow 188.0 12.56 4.161 6.316 0.511 0.312

Table 2: Predict effective tow properties from FE calculations and the tow constitutive
model

direction with ratios of 2:2 and 2:1, and 2) tri-axial loading with an axial to transverse to

transverse strain ratio of 2:2:1. The largest differences between the tow and hexagonal

model occurred in uni-axial transverse loading. Figure 2 shows the stress-strain curves.

Figure 3 shows the longitudinal-transverse shear-stress versus shear-strain response for

vf equal to 0.5, 0.6, 0.7, and 0.8 calculated by the tow model and from micromechanical

simulations based upon hexagonal fiber packing. The figure includes a FE simulated

response for a square fiber array with vI = 0.70. Little difference exists between the tow

model and hexagonal idealization for all v~" examined. While the square, hexagonal, and

tow results for vl -_ 0.7 are similar at larger strains, the square idealization differences

substantially from the other results for small strains.

Engineering judgment must be exercised when comparing results from different mod-

els. The hexagonal packing idealization used here represents one of many possible fiber

arrangements. Unfortunately, each idealization yields slightly different elastic coefficients

and macroscopic behavior. For example, similar FE simulations for a square packing ar-

ray with v.f = 0.70 predict that #Le is 5.93 GPa - 35% larger than the present hexagonal

idealization. On the other hand, Hasin and Rosen’s (1964) composite cylinder assemblage

model yields a longitudinal modulus that is always larger than the present tow model

which in turn is larger than the hexagonal model (for the current material). While cer-

tain models are easier to work with, no geometrical idealization captures the actual fiber

distribution in the composite and consequently the composite’s exact response.
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Figure 2: Uni-axial stress response in the transverse direction
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Figure 3: Longitudinal shear stress response - vf = 0.5, 0.6, 0.7, and 0.8
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3 Simplified Representative Volume Element

The braid RVE is shown schematically in Figure 4 and is the same idealization used in

Zywicz and Nguyen (1999) and Zywicz et al (2000). The RVE contains two fiat ° axial

tows, two pairs of piecewise linear undulating braider tows oriented in the +0 and -0

direction, and several resin pockets. The tows are braided in a 2 × 2 pattern and have

rectangular cross sections t thick and d wide. (Subscripts a and b denote the individual

axial and braider tow quantities, respectively.) The ±0 braider crossover junction is offset

from the braider-axial tow crossover junction. The RVE is 2w wide and t thick, where w

is the inter-axial tow spacing, and t is given by

t = t~ + 2tb. (96)

Each tow contains m! filaments with an average filament diameter of dy. (Note, my and

dy need not be the same in the axial tow and braider tows.) Consequently, p, the tow

packing density (or tow fiber volume fraction) is expressed 

my d} r/4
(97)P- dt

When t is small compared to w and l, the overall RVE fiber volume fraction is approxi-

mately ~r ( V/1 tan~ 0 d~b)
V/~ 4wt ml~ d}~ + + mi~ . (98)

The braider tows parMlel the RVE mid-surface except in the undulation region where

they are inclined from the mid-surface by ¢, the crimp angle. The crimp angle depends

strongly upon the d~ and the two thicknesses, and is given by

¢ =x (t. + t )co 09)
w cos 0 - d~

In the RVE plane, the undulation regions appear ~ parallelograms whose vertices lie on

the edges of the ~ial tows and opposite fiber direction braider tows. Thus, in order for

the braiders to undulate, d~ ~ w/2 and d~ ~ w cos 0.
The RVE contains some rather artificial microstructurM features. Undulations and

in-plane curvature in the axial tows are absent while the braider tows are represented

as piecewise linear sections. This creates appreciable pure resin "pockets" around the

undulations, yields an overly large ¢ for higher V/, and produces a discontinuous fiber

direction in the braiders. Consequently, neither tow representation depicts the true
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Figure 4: RVE a) top view, b) section parallel to braider tow, and c) section perpendic-
ular to axial tow
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30°

45°

60°

 (mm)
1.550
1.753
2.286

tb (mm)
0.467
0.569
0.836

db (ram)
6.647
5.462
3.721

/(mm)
17.60
10.16
5.866

23.5°

34.5°

42.7°

Table 3: RVE dimensions and crimp angle

meandering geometry of the fibers or the dense melded appearance present in sectional

micrographs. (Note, the natural tendency for the upper and lower braider tows to curve

toward the mid-surface near the undulation pockets reduces the pocket size and ¢ in the

actual composite material.)

Table 3 summarizes the RVE dimensions for three large-tow carbon-fiber tri-axial

braids. In each, the axial and braider tows contain 80,000 filaments with an average df

of 6.2 #m, V~, is approximately 50%, p~ and p~ are 75%, and w is 10.16 mm. To minimize

¢, da is set equal to w/2. Thus from (97), t~ is 0.613 mm.

4 3-Layer Numerical Braid Model

The 3-layer numerical braid model is now presented. First, the simplified braid RVE

geometry and idealizations are explained. Next, an explicit undulation model is assem-

bled. Lastly, the integration rules to use this model with traditional shell elements in FE

simulations are summarized.

4.1 3-Layer Braid P~VE

The braid RVE is further simplified to allow numerical modeling. The RVE is sectioned

into three layers as shown in Figure 5. The axial tows reside completely within the middle

layer while the fiat portions of the :t:0 braiders populate the upper and lower layers. In the

middle layer, the fibers in the undulations are neglected so that it consists conceptually

of pure resin and axial tow regions. The layer is "homogenized" by assuming an iso-strain

state in the fiber direction and iso-stress state in all other directions. The homogenization

yields the previous tow-level model except the effective fiber volume fraction is now given

by
= (100)
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In the upper and lower layers, the braider fibers, including half the projected undulation

portions that reside in the middle layer, are segregated within each layer with their

surrounding resin regions. A similar homogenization is applied in each region which

effectively just reduces the braider vI so that the effective braider fiber volume fraction

becomes
= (lOl)

tb w cos 0

Several additional idealizations are made regarding the upper and lower layers. It is

assumed that there are two coincidental upper and lower layers, and that the effective

braider material for each direction occupies one entire upper and lower layer. To obtain

the correct net RVE surface tractions, only half the effective braider stress are included

in the overall braid response. The distance the extreme layers are offset from the neutral

surface can differ in the numerical and physical P~VE models. Finally, the influence of

undulations is limited and does not couple the behavior of the respective upper and lower

braider tows.

4.2 Undulations

The effects of braider undulations are included via a 1-dimensional undulation model
that is selectively added, in series, to the tow model. The fiber-direction strain is split

into a undulation portion, ~, and a straight portion, e~i, as

-- __ ell, 002)

where A is the undulation length fraction. For the present braid RVE, A is expressed as

cos 0 - db/W (103)

cos( /2- + 1/tango

The undulation stress, a=, is functionally given by

(104)

where e= p is the plastic undulation strain and C= is the undulation modulus. Detailed

numerical simulations of the undulation region show that the tensile response smoothly

transitions from an initial linear response to a softer secondary linear region. (See Fig-

ure 6.) In compression, the response is nearly elastic/perfectly-plastic. However, both
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Figure 5: 3-layer idealization a) RVE, b) top layer, c) middle layer, and d) bottom layer
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Figure 6: FE undulation model and its predicted force-displacement behavior
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¯ the tensile and compressive behavior depend strongly on the adjacent material and con-

straints. At present, Cu is taken as constant .Until a more accurate relationship is assem-

bled, eu p is neglected and C" is taken as constant.

Naik (1995) developed an undulation model from solutions for an elastic curved beam

on an elastic foundation. Cu is obtained by linearizing his model about zero axial load

and averaging the strain in the undulation region. This yields

1 _ B (1 - B)a 1
(105)Su = C~ - 8 (E~tB3 (1 - B)/12 + (L~/t)

where
~=a .x/,a2 -1-1 ’ (106)

2B
a=3+~ (107)

1-B’

A = t~/t, B = tb/t, and L~ = I w@ + 1/tan 2 0. (108)

Here Eft is the Young’s modulus of the braider tow obtained using the original RVE

packing fraction, pb. Unlike the original formulation, the matrix modulus is used for the

elastic foundation stiffness. (This yields better agreement with detailed FE simulations

of the braid RVE.)

4.3 Numerical Utilization

The present braid model is designed to be used in traditional shell elements with a

modified through-thickness integration rule. To accurately capture the elastic flexural

response, 10 through-thickness integration points must be used and be positioned at

specified locations. The integration weights, w, and locations, ~ (-1 _< ¢ <_ 1), are

summarized in Table 4. In select applications, 5 through-thickness integration points
can be used. The conventional integration weights and locations are listed in Table 5,

however, alternative braider locations might provide better integration of the flexural

response.

5 3-Layer Braid Model Validation

The elasto-plastic response of the 3-layer braid model was compared to detailed, 3-D

FE simulations of the braid I~VE. Three braid angles were examined: 0 = 30°, 45°, and
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Tow

Axial
Axial
+8 Braider
-8 Braider
+8 Braider
-8 Braider
+8 Braider
-8 Braider
+8 Braider
-8 Braider

Point
1
2
3
4
5
6
7
8
9
10

Table 4: Weights and

B/2
B/2
B/2
B/2
B/2
B/2
B/2
B/2

-A/v~
A + B(1 + 1/x/~)
A + B(1 
A + B(1-1/V/~)
A + B(1 - 1/v~)

-A- B(1 + 1/x/~)
-A- S(1 + 1/x/~)
-g- S(1- 1/v~)
-A- 8(1- 1/v/~)

positions for 10 point integration

Tow

Axial
+8 Braider
-8 Braider
-8 Braider
+8 Braider

Point
1
2
3
4
5

2A 0
B A + B/2
B A + B/2
B -A-B/2
B -A-B/2

Table 5: Weights and positions for 5 point integration
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Model Extension Flexure
EtE~ Et ~u ~u E~

30° 3-Layer 56.1 8.08 1.15 12.0 35.0 7.61 1.35

FE 59.8 8.82 1.07 11.0 32.5 8.37 0.946
45° 3-Layer 38.8 15.1 0.726 14.3 14.2 12.5 0.764

FE 40.1 15.1 0.686 11.5 15.0 12.5 0.631
60° 29.3 33.6 0.322 12.8

29.8 25.9 0.300 8.48
8.61 31.0 0.322
9.00 23.5 0.283

3-Layer
FE

Table 6: Predicted and simulated braid properties (units - GPa)

60°. The continuum FE model, ’described in Zywicz and Nguyen (1999) and Zywicz

et al (2000), used the fiber and matrix properties summarized in Table 1 and section

2.5. Periodic boundary conditions were imposed on the RVE to infer the effective elastic

properties. Table 6 summaries the elastic properties of the braid RVE obtained from

the 3-layer model and the detailed FE simulations. In the 3-layer model, the undulation

stiffness has a strong influence on the braider dominated properties E~, uu, and

especially for the larger braid angles. For example, a 30% reduction in C~ lowered the

extensional Et and #u properties for 0 = 60° slightly below the FE based values, but left

E~ unchanged.

The elasto-plastic response of the 3-layer model and the detailed continuum RVE

model are plotted in Figures 7-11 for uni-axial extension, simple shear, and uni-axial

flexure. In all cases, the differences in the initial elastic responses reflect the differences

in elastic moduli summarized in Table 6. As evident from Figure 7, good agreement
exits between both model predictions for uni-axial longitudinal extension for all braider

angles. In uni-axial transverse extension and longitudinal-transverse shear, Figures 8

and 9, agreement between the two models deteriorates at higher strain levels as the

braider angle increases and the axial response of the braiders become more significant.

Examination of the 3-layer model shows that under longitudinal-transverse shear, the

axial behavior of the braider tows dominate the overall response, while in transverse

extension, this occurs only when 0 is large.

The strains in the braider tows at maximum imposed shear strain were quantified

using the 3-layer model. Based upon the previous FE undulation modeling, the stress at

the corresponding axial strain was estimated. For the braider tow in compression, the

corresponding axial stress was less than one-third, in magnitude, than that predicted by
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Figure 7: Longitudinal uni-axial stress-strain response
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Figure 8: Transverse uni-axial s~ress-strain response
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Figure 9: Longitudinal-transverse shear stress-strain response
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Figure 10: Longitudinal flexure - pseudo stress-strain response of upper surface
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Figure 11: Transverse flexure - pseudo stress-strain response of upper surface

the 3-layer model. The inclusion of an appropriate undulation model would therefore

lower the shear response to a level much closer to that predicted by the FE RVE model.

The uni-axial flexural response was examined in the two primary directions. The

moment-rotation curves have been transformed into pseudo macro stress-strain curves

for a material point on the tensile surface and are plotted in Figures 10 and 11. The

pseudo stress is calculated by assuming the distribution of macro stress is linear in the

through-thickness direction, i.e., an elastic idealization. Again, the difference in elastic

moduli has a predictable influence on the initial portions of the curves. In all cases, the

3-layer longitudinal response predicts excessive strain softening compared to the RVE

results, and the extra strain softening is not related to quadrature error. (Higher order

integration yielded nearly identical results.) The source of this behavior is not presently

understood.

Various simulations were performed to test the damage portion of the braid model

with and without plasticity. The 3olayer model responded numerically as expected. With

out a consistent set of material properties, the predictions are of limited use, and therefore

not shown here. Nonetheless, validating the damage portion of the model against physical

experiments possess the biggest challenge and remains to be accomplished.
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6 Conclusion

A numerical approach to model the elasto-plastic and tensile damage response of tri-

axially braided carbon-fiber polymeric-matrix composites has been developed. It consists

of a simplified RVE geometry, a plane-stress tow-level constitutive relationship, a one-

dimensional undulation relationship, and a non-traditional shell element integration rule.

The tow-level constitutive model is micromechanically based and constructed from the

fiber and matrix behavior. Its pre-damage response compares favorably with detailed FE

micromechanical simulations of periodically arranged uni-directional composites. Tensile

damage is included in the tow model to replicate, in a smeared manner, the evolution of

cracks parallel and perpendicular to the fiber-direction. The influence of the undulation

is captured by coupling the fiber-direction response with a one-dimensional undulation

relationship at the tow level. The total braid response is achieved by integrating the

3-layer model in the through-thickness direction with a non-traditional shell element

integration rule. The present tow-level model can also be used separately to model uni-

directional lamina.

The braid model has been implemented in DYNA3D, and is fully compatible with

traditional shell element formulations. The predicted elastic extensional, shear, and flex-

ural braid properties agree reasonably well with more detailed micromechanical models

for a broad range of braider angles. Comparisons of the inelastic braid behavior demon-

strate similar good agreement when the axial tows dominate the response, but show

larger discrepancies when the response is controlled by the braider tows. Under exten-

sional and shear loadings, this deficiency arises from the lack of an appropriate non-linear

undulation model.

While the present braid formulation includes elasticity, plasticity, and tensile dam-

age, it lacks comprehensive compressive failure mechanisms and an adequate non-linear

undulation model. The inclusions of the later features will yield a comprehensive formu-

lation that can be applied to model a wide range of carbon-fiber textile composites. This

includes the present tri-axially braided architectures as well as, with slight modification,

woven, cloth, and even uni-directional fiber architectures.
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